A Novel Technique for Achieving the Approximated ISI at the Receiver for a 16QAM Signal Sent via a FIR Channel Based Only on the Received Information and Statistical Techniques

Author:

Goldberg Hadar,Pinchas MonikaORCID

Abstract

A single-input-multiple-output (SIMO) channel is obtained from the use of an array of antennas in the receiver where the same information is transmitted through different sub-channels, and all received sequences are distinctly distorted versions of the same message. The inter-symbol-interference (ISI) level from each sub-channel is presently unknown to the receiver. Thus, even when one or more sub-channels cause heavy ISI, all the information from all the sub-channels was still considered in the receiver. Obviously, if we know the approximated ISI of each sub-channel, we will use in the receiver only those sub-channels with the lowest ISI level to get improved system performance. In this paper, we present a systematic way for obtaining the approximated ISI from each sub-channel modelled as a finite-impulse-response (FIR) channel with real-valued coefficients for a 16QAM (16 quadrature amplitude modulation) source signal transmission. The approximated ISI is based on the maximum entropy density approximation technique, on the Edgeworth expansion up to order six, on the Laplace integral method and on the generalized Gaussian distribution (GGD). Although the approximated ISI was derived for the noiseless case, it was successfully tested for signal to noise ratio (SNR) down to 20 dB.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of Turbo Codes, LDPC Codes, and Polar Codes over an AWGN Channel in the Presence of Inter Symbol Interference;Sensors;2023-02-09

2. A New Blind Adaptive Equalization Method;2022 International Conference on Frontiers of Communications, Information System and Data Science (CISDS);2022-11

3. Improved Approach for the Maximum Entropy Deconvolution Problem;Entropy;2021-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3