Improved Approach for the Maximum Entropy Deconvolution Problem

Author:

Shlisel Shay,Pinchas MonikaORCID

Abstract

The probability density function (pdf) valid for the Gaussian case is often applied for describing the convolutional noise pdf in the blind adaptive deconvolution problem, although it is known that it can be applied only at the latter stages of the deconvolution process, where the convolutional noise pdf tends to be approximately Gaussian. Recently, the deconvolutional noise pdf was approximated with the Edgeworth Expansion and with the Maximum Entropy density function for the 16 Quadrature Amplitude Modulation (QAM) input but no equalization performance improvement was seen for the hard channel case with the equalization algorithm based on the Maximum Entropy density function approach for the convolutional noise pdf compared with the original Maximum Entropy algorithm, while for the Edgeworth Expansion approximation technique, additional predefined parameters were needed in the algorithm. In this paper, the Generalized Gaussian density (GGD) function and the Edgeworth Expansion are applied for approximating the convolutional noise pdf for the 16 QAM input case, with no need for additional predefined parameters in the obtained equalization method. Simulation results indicate that improved equalization performance is obtained from the convergence time point of view of approximately 15,000 symbols for the hard channel case with our new proposed equalization method based on the new model for the convolutional noise pdf compared to the original Maximum Entropy algorithm. By convergence time, we mean the number of symbols required to reach a residual inter-symbol-interference (ISI) for which reliable decisions can be made on the equalized output sequence.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3