Research on Path Planning and Tracking Control of Autonomous Vehicles Based on Improved RRT* and PSO-LQR

Author:

Zhang Yong1,Gao Feng1,Zhao Fengkui1

Affiliation:

1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

Path planning and tracking control are essential parts of autonomous vehicle research. Regarding path planning, the Rapid Exploration Random Tree Star (RRT*) algorithm has attracted much attention due to its completeness. However, the algorithm still suffers from slow convergence and high randomness. Regarding path tracking, the Linear Quadratic Regulator (LQR) algorithm is widely used in various control applications due to its efficient stability and ease of implementation. However, the relatively empirical selection of its weight matrix can affect the control effect. This study suggests a path planning and tracking control framework for autonomous vehicles based on an upgraded RRT* and Particle Swarm Optimization Linear Quadratic Regulator (PSO-LQR) to address the abovementioned issues. Firstly, according to the driving characteristics of autonomous vehicles, a variable sampling area is used to limit the generation of random sampling points, significantly reducing the number of iterations. At the same time, an improved Artificial Potential Field (APF) method was introduced into the RRT* algorithm, which improved the convergence speed of the algorithm. Utilizing path pruning based on the maximum steering angle constraint of the vehicle and the cubic B-spline algorithm to achieve path optimization, a continuous curvature path that conforms to the precise tracking of the vehicle was obtained. In addition, optimizing the weight matrix of LQR using POS improved path-tracking accuracy. Finally, this article’s improved RRT* algorithm was simulated and compared with the RRT*, target bias RRT*, and P-RRT*. At the same time, on the Simulink–Carsim joint simulation platform, the PSO-LQR is used to track the planned path at different vehicle speeds. The results show that the improved RRT* algorithm optimizes the path search speed by 34.40% and the iteration number by 33.97%, respectively, and the generated paths are curvature continuous. The tracking accuracy of the PSO-LQR was improved by about 59% compared to LQR, and its stability was higher. The position error and heading error were controlled within 0.06 m and 0.05 rad, respectively, verifying the effectiveness and feasibility of the proposed path planning and tracking control framework.

Funder

Industrial Proactive and Key Technology Program of Jiangsu Province

the Modern Agriculture-Key and General Program of Jiangsu Province

Philosophy and Social Science Program of the Higher Education Institutions of Jiangsu Province

Science and Technology Innovation Foundation for Young Scientists of Nanjing Forestry University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3