Chitosan–Gelatin Scaffolds Loaded with Different Antibiotic Formulations for Regenerative Endodontic Procedures Promote Biocompatibility and Antibacterial Activity

Author:

Alghofaily Maha1ORCID,Almana Aljowhara2,Alrayes Jenan2,Lambarte Rhodanne3ORCID,Weir Michael D.4,Alsalleeh Fahd1ORCID

Affiliation:

1. Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia

2. College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia

3. Molecular and Cell Biology Laboratory, King Saud University Medical City, P.O. Box 60169, Riyadh 11545, Saudi Arabia

4. Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA

Abstract

Background: This study investigated the biocompatibility and antibacterial efficacy of chitosan–gelatin (CH-G) scaffolds loaded with slow-releasing antibiotic formulations used in regeneration endodontic procedures (REPs). Methods: Scaffolds were fabricated using freeze drying and loaded with varying concentrations of augmentin or modified triple antibiotic paste (mTAP). High-resolution scanning electron microscopy (SEM) was used to characterize the scaffold, while drug release was monitored via UV-Vis spectrophotometry. Immortalized human mesenchymal stem cells (hMSCs) were cultured on CH-G scaffolds alone (control), either 0.1 mg/mL or 1 mg/mL of augmentin or mTAP, and 10 mg/mL calcium hydroxide (Ca(OH)2). Cell viability and proliferation were assessed using the Alamar Blue assay and SEM, respectively, and live/dead staining further corroborated cell viability. Antibacterial activity against Enterococcus faecalis was evaluated using the MTT assay and confocal laser scanning microscopy (CLSM). Results: Augmentin at 0.1 mg/mL appeared to promote better cell growth and attachment within the scaffolds than all other formulations, exhibiting acceptable viability. SEM revealed improved cell attachment in augmentin and mTAP groups compared to the Ca(OH)2 group. Augmentin at 1 mg/mL and mTAP groups significantly reduced viable bacteria compared to controls. Augmentin groups and mTAP at 1 mg/mL were highly effective in eliminating E. faecalis biofilms, with mTAP potentially causing more cell death within the remaining biofilm structures. Conclusions: This study suggests that CH-G scaffolds loaded with augmentin and mTAP, particularly at a concentration of 1 mg/mL, offer promising advantages for REPs due to their biocompatibility, antibacterial efficacy, and ability to promote cell attachment. Further research may explore the long-term effects in clinical settings.

Funder

King Saud University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3