Study on the Influence and Control of Stress Direction Deflection and Partial-Stress Boosting of Main Roadways Surrounding Rock and under the Influence of Multi-Seam Mining

Author:

Chen DongdongORCID,Guo Fangfang,Li Zijian,Ma XiangORCID,Xie ShengrongORCID,Wu Yiyi,Wang Zhiqiang

Abstract

A large coal pillar (usually more than 90 m) is generally left in place to ensure the stability of main roadway groups, due to its long service lifespan, which commonly also causes a significant loss of coal resources. The design of the width of the protective coal pillar and the control system of the surrounding rock are directly determined by the characteristics of the stress field and the damage mechanism under the influence of the mining activities. However, there are few studies on the effects of the partial-stress boosting and the direction deflection of the stress field on the failure evolution of the surrounding rock (especially in multi-seam mining). In this paper, theoretical analysis and numerical simulation are used to investigate the direction evolution of the maximum principal stress in front of the working face with malposition distances between the upper and lower working faces during the influence of double coal seams mining. Furthermore, a large-scale numerical model is used to study the deviatoric stress evolution of the surrounding rock and the propagation process of the plastic zone in the main roadway group with different widths of protective coal pillars. Then, an asymmetric cooperative anchoring classification method is proposed to strengthen the roadway support, depending on the critical area of the deviatoric stress in the roadway surrounding rock. The peak zone deflection of the deviatoric stress determines the evolution direction of the plastic area, and the peak value of the deviatoric stress presents a typical asymmetric stress boosting on both sides of the roadway. These findings are validated by the on-site ground pressure monitoring results and the practical failure modes of the surrounding rock.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference43 articles.

1. Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective;Jia;Resour. Policy,2021

2. The role of new energy in carbon neutral;Zou;Pet. Explor. Dev.,2021

3. Current Status of Hydrogen Production in China;Cao;Prog. Chem.,2021

4. State of the art in underground coal mining and automation technology in the United States;Jiachen;J. China Coal Soc.,2021

5. Automation in U.S. longwall coal mining: A state-of-the-art review;Peng;Int. J. Min. Sci. Technol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3