Research on J2 Evolution Law and Control under the Condition of Internal Pressure Relief in Surrounding Rock of Deep Roadway

Author:

Chen Dongdong1,Wang Zhiqiang1,Jiang Zaisheng1,Xie Shengrong1ORCID,Li Zijian1,Ye Qiucheng1,Zhu Jingkun1

Affiliation:

1. School of Energy and Mining Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China

Abstract

In order to solve the support problem of deep soft crushed coal roadway, a concentrated cavern in a mining station of a mine is taken as the test object. Based on the analysis and summary of the field observation data and the law of rock pressure appearance, a new technology of pressure relief anchoring with the main body of “initiative support + borehole pressure relief” is proposed. This new technology will carry out strong active support in the shallow part of the surrounding rock and excavate a row of low-density large-diameter pressure relief boreholes in the deep coal body of the roadway ribs. The numerical analysis model is established by FLAC3D, and the second invariant of deviatoric stress (J2) is used as the analysis index to elaborate the influence of different borehole parameters on the pressure relief effect of roadway surrounding rock. The results show that different borehole parameters have different effects on roadway pressure relief, that is, borehole depth > borehole length > borehole spacing. After the borehole process is used to relieve the pressure of the surrounding rock, the deformation of the mining roadway side in the subsequent observation process is always controlled within the range of 100 mm, and the shallow surrounding rock support system is effectively protected. The comprehensive control effect is very obvious. Therefore, the field practice proves that the supporting technology can effectively solve the problem of large deformation support of similar roadway surrounding rock.

Funder

National Natural Science Foundation of China

Central Universities

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3