Affiliation:
1. State Key Laboratory of Hydraulic Engineering Simulation and Safety & School of Civil Engineering, Tianjin University, Tianjin 300072, China
2. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
Abstract
Utilization of large aggregates can promote energy conservation and emissions reductions, and large aggregates have been widely used in hydraulic concrete. The failure criterion for concrete material utilizing large aggregates forms the basis for constitutive models and structural design. However, the concrete failure criterion with respect to large aggregates has never been researched. To this end, the authors first conducted a series of triaxial compressive tests on concrete specimens with scaled aggregates. On this basis, several 3D mesoscopic numerical models were established with different aggregate gradations and used to simulate the triaxial compressive behaviors of hydraulic concrete after the models had been verified by experimental results. The results showed a pronounced aggregate-gradation effect on triaxial compressive behaviors, and concrete mixes with larger aggregates usually have higher compressive strength, especially under conditions of higher confinement. The normalized peak strength can increase by up to 23.49%. Finally, based on the available testing data, the strength criterion in different constitutive models is discussed and modified to allow more accurate simulation of the dynamic responses of and damage to fully graded concrete structures. This result can provide a theoretical basis on which construction entities can optimize the mix proportions of fully graded concrete and detect the failure modes of concrete structures.
Funder
Visiting Researcher Fund Program of State Key Laboratory of Water Resources Engineering and Management, Wuhan University
National Natural Science Foundation of China