Numerical Evaluation of the Influence of Aggregates on Concrete Compressive Strength at High Strain Rate

Author:

Hao Yifei1,Hao Hong1

Affiliation:

1. School of Civil and Resource Engineering, The University of Western Australia 35 Stirling Highway, Crawley WA 6009, Australia

Abstract

The dynamic strength of concrete materials is usually obtained by conducting laboratory tests such as drop-weight test or split Hopkinson pressure bar (SHPB) test. It is widely accepted that the uniaxial compressive strength of concrete and concrete-like material increases with strain rate. Many empirical relations of concrete material dynamic increase factor (DIF), which are proposed for use in the design and analysis, are given in the literature. However, most of these empirical relations were obtained from testing data of concrete-like materials, i.e. the testing specimens were made of mortar matrix only without coarse aggregates owing to constraints in preparing the concrete specimens for high-speed impact tests. Because concrete is a composite material with mortar matrix, interfacial transition zone (ITZ) and aggregates, and these components have different material properties, using specimens made of mortar material alone in tests may not give accurate concrete dynamic material properties. It is also known that the lateral inertia confinement affects the dynamic strength of concrete specimens obtained in impact tests. A number of studies to investigate and quantify the lateral inertia confinement effect on dynamic strength of concrete materials obtained in impact tests have been published. Previous studies also indicate that including aggregates in concrete specimens affects the dynamic strength. However, no systematic study that devotes to investigating the influence of aggregates in concrete specimen on its dynamic strength has been reported yet. In the present study, a mesoscale concrete material model is used to simulate impact tests and to study the influences of aggregates on concrete material compressive strength increment at high strain rates. The commercial software AUTODYN is used to perform the numerical simulations. A method to remove the influence from lateral inertia confinement is proposed and verified. The influence of ITZ on compressive behavior of concrete specimen is discussed. Numerical simulations of concrete specimens with different volumetric percentages, e.g. 20% 30% and 40%, of aggregates under impact loads of different loading rates are carried out. The influence of the aggregates on DIF of concrete material is examined and quantified.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3