A Deep Learning Approach for Predictive Healthcare Process Monitoring

Author:

Ramirez-Alcocer Ulises Manuel1ORCID,Tello-Leal Edgar2ORCID,Romero Gerardo1ORCID,Macías-Hernández Bárbara A.2ORCID

Affiliation:

1. Multidisciplinary Academic Unit Reynosa-Rodhe, Autonomous University of Tamaulipas, Reynosa 88779, Mexico

2. Faculty of Engineering and Science, Autonomous University of Tamaulipas, Victoria 87000, Mexico

Abstract

In this paper, we propose a deep learning-based approach to predict the next event in hospital organizational process models following the guidance of predictive process mining. This method provides value for the planning and allocating of resources since each trace linked to a case shows the consecutive execution of events in a healthcare process. The predictive model is based on a long short-term memory (LSTM) neural network that achieves high accuracy in the training and testing stages. In addition, a framework to implement the LSTM neural network is proposed, comprising stages from the preprocessing of the raw data to selecting the best LSTM model. The effectiveness of the prediction method is evaluated through four real-life event logs that contain historical information on the execution of the processes of patient transfer orders between hospitals, sepsis care cases, billing of medical services, and patient care management. In the test stage, the LSTM model reached values of 0.98, 0.91, 0.85, and 0.81 in the accuracy metric, and in the evaluation of the prediction of the next event using the 10-fold cross-validation technique, values of 0.94, 0.88, 0.84, and 0.81 were obtained for the four previously mentioned event logs. In addition, the performance of the LSTM prediction model was evaluated with the precision, recall, F1-score, and area under the receiver operating characteristic (ROC) curve (AUC) metrics, obtaining high scores very close to 1. The experimental results suggest that the proposed method achieves acceptable measures in predicting the next event regardless of whether an input event or a set of input events is used.

Funder

Universidad Autónoma de Tamaulipas

Consejo Nacional de Ciencia y Tecnología (CONACYT) of México

Publisher

MDPI AG

Subject

Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3