Automatic Implementation of a Self-Adaption Non-Intrusive Load Monitoring Method Based on the Convolutional Neural Network

Author:

Wu Xin,Jiao Dian,Du Yu

Abstract

Non-intrusive load monitoring (NILM) is an effective way to achieve demand-side measurement and energy efficiency optimization. This paper studies a method of non-intrusive on-line load monitoring under a high-frequency mode of electric data acquisition, which enables the NILM to be automated and in real-time, including the short-term construction of a dynamic signature library and continuous on-line load identification. Firstly, in the short initial operation phase, load separation and category determination are carried out to construct the load waveform library of the monitoring user. Then, the continuous load monitoring phase begins. Based on the data of each user’s signature library, the decomposition waveforms are classified by convolutional neural network models that are constructed to be suitable for each signature library in order to realize load identification. The real-time power consumption status of the load can be obtained continuously. In this paper, the electricity data of actual users are collected and used to perform the experiments, which show that the proposed method can construct the load signature library adaptively for different users. Meanwhile, the classification of the convolutional neural network model based on a library constructed in actual operation ensures the real-time and accuracy of load monitoring.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3