Peer-to-Peer Energy Trading Case Study Using an AI-Powered Community Energy Management System

Author:

Mahmoud Marwan12ORCID,Slama Sami Ben2

Affiliation:

1. The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Analysis and Processing of Electrical and Energy Systems Unit, Faculty of Sciences of Tunis El Manar, Belvedere PB 2092, Tunisia

Abstract

The Internet of Energy (IoE) is a topic that industry and academics find intriguing and promising, since it can aid in developing technology for smart cities. This study suggests an innovative energy system with peer-to-peer trading and more sophisticated residential energy storage system management. It proposes a smart residential community strategy that includes household customers and nearby energy storage installations. Without constructing new energy-producing facilities, users can consume affordable renewable energy by exchanging energy with the community energy pool. The community energy pool can purchase any excess energy from consumers and renewable energy sources and sell it for a price higher than the feed-in tariff but lower than the going rate. The energy pricing of the power pool is based on a real-time link between supply and demand to stimulate local energy trade. Under this pricing structure, the cost of electricity may vary depending on the retail price, the number of consumers, and the amount of renewable energy. This maximizes the advantages for customers and the utilization of renewable energy. A Markov decision process (MDP) depicts the recommended power to maximize consumer advantages, increase renewable energy utilization, and provide the optimum option for the energy trading process. The reinforcement learning technique determined the best option in the renewable energy MDP and the energy exchange process. The fuzzy inference system, which takes into account infinite opportunities for the energy exchange process, enables Q-learning to be used in continuous state space problems (fuzzy Q-learning). The analysis of the suggested demand-side management system is successful. The efficacy of the advanced demand-side management system is assessed quantitatively by comparing the cost of power before and after the deployment of the proposed energy management system.

Funder

Institutional Fund Projects

Ministry of Education and King Abdelaziz University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3