Response of Thinning to C:N:P Stoichiometric Characteristics and Seasonal Dynamics of Leaf-Litter-Soil System in Cupressus funebris Endl. Artificial Forests in Southwest, China

Author:

Jiang Xue12ORCID,Yang Jingtian1,Yang Yulian1,Yang Jiaping1,Dong Qing1,Zeng Houyuan2,Zhang Kaiyou1,Xu Ning1,Yuan Jiayi2,Liu Mei1,Li Dehui3,Wu Qinggui1

Affiliation:

1. Ecological and Security Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China

2. Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Mianyang 621000, China

3. School of Urban and Rural Planning and Construction, Mianyang Normal University, Mianyang 621000, China

Abstract

Ecological stoichiometry is essential for investigating biogeochemical cycling in an ecosystem. Thinning, a management practice that closely mimics natural processes, significantly influences stand structure and microclimate, thereby affecting nutrient cycling. Nonetheless, seasonal variations in ecological stoichiometry across the leaf-litter-soil continuum under different thinning regimes remain inadequately understood. In this study, we evaluated three thinning methods (strip filling (SF), ecological thinning (ET), and forest gap (FG)) to investigate the stoichiometric characteristics of Cupressus funebris Endl (C. funebris). within the leaf-litter-soil system in Southwest China. The samples were collected during four distinct seasonal periods: early dry season (January–March, EDS), late dry season (April–June, LDS), early wet season (July–September, EWS), and late wet season (October–December, LWS). The results indicated that the (1) carbon (C), nitrogen (N), and phosphorus (P) contents and C:N:P ratio in leaves, litter, and soils varied widely and were strongly influenced by thinning method and season. (2) In the EDS, the soil TP content significantly decreased by 36.9% (p < 0.05), 41.67% (p < 0.05), and 17.9% (p < 0.05) under ET, FG, and SF treatments compared to the pure C. funebris forest (PC). (3) Compared to the PC, the leaf organic C content under ET significantly increased by 6.6% (EDS, p < 0.05), 8.4% (EWS, p < 0.05), 24.8% (LDS, p < 0.05), and 11.5% (EWS, p < 0.05). (4) Under identical thinning methods, the contents of litter C, litter N, litter P, leaf N, and leaf P (excluding litter C in SF) were found to be highest in the LWS. Conversely, the ratios of litter C:N, litter C:P, litter N:P, leaf C:N, leaf C:P, leaf N:P, soil N:P, and soil C:P (except for the ratios of litter N:P in ET and FG) were observed to be lowest in the LWS. (5) Season and thinning method significantly affected the internal stability of P stoichiometric homeostasis, and litter P under ET (EWS) was categorized as “plastic” (p < 0.1, 0.75 < H). (6) The results of the structural equation model show that the thinning method has a direct positive impact on leaf C, N, and P contents and a direct negative impact on the chemical stoichiometry of leaves and soil. Season has a direct positive impact on soil C, N, and P contents, as well as on the chemical stoichiometry of litter and leaves; however, they have a direct negative impact on leaf C, N, and P contents. This study contributes to C. funebris plantation management and provides basic information for global stoichiometric analysis.

Funder

National Natural Science Foundation of China

Sichuan Provincial Science and Technology Department Project

Ecological and Security Key laboratory of Sichuan Province, China

Scientific Research Project of Mianyang Normal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3