Stability of C:N:P Stoichiometry in the Plant–Soil Continuum along Age Classes in Natural Pinus tabuliformis Carr. Forests of the Eastern Loess Plateau, China

Author:

Chen HaoningORCID,Xiang Yun,Yao Zhixia,Zhang Qiang,Li Hua,Cheng Man

Abstract

Ecological stoichiometry is useful for revealing the biogeochemical characteristics of flows of nutrients and energy between plant and soil, as well as the important implications behind these ecological phenomena. However, the ecological stoichiometric linkages among leaf, litter, soil, and enzymes in the natural forests of the Loess Plateau remain largely unknown. Here, leaf, litter, and soil samples were collected from four age classes of natural Pinus tabuliformis Carr. (P. tabuliformis) to explore the deep linkages among these components. We measured the total carbon (C), total nitrogen (N), and total phosphorus (P) concentrations of leaf and litter, as well as the concentrations of soil organic C, total N, total P, nitrate N, ammonium N, available P, and the activities of β-1,4-glucosidase (a C-acquiring enzyme), β-1,4-N-acetylglucosidase (an N-acquiring enzyme), and alkaline phosphatase (a P-acquiring enzyme) in the topsoil (0–20 cm). The average leaf N:P was 6.9 indicated the growth of P. tabuliformis was constrained by N according to the relative resorption theory of nutrient limitation. The C:N, C:P, and N:P ratios in leaf, litter, and soil and the enzyme activity were not significantly different among age classes (p > 0.05). Litter C:N (43.3) was closer to the ratio of leaf C:N (48.8), whereas the litter C:P (257.7) was obviously lower than the ratio of leaf C:P (338.15). We calculated the stoichiometric homeostasis index (1/H) of leaf responses to soil elements and enzyme activities and found that the relationship between leaf C:P and soil C:P was homeostatic (p < 0.05), whereas the remaining indices showed the leaf stoichiometries were strictly homeostatic (p > 0.05). Correlation analysis showed both litter C:P and N:P were positively correlated with leaf and soil C:P, while the stoichiometric ratios of soil elements and enzymes were obviously irrelevant with leaf stoichiometries (p > 0.05). Partial least squares path modeling indicated that litter significantly changed soil element and enzyme characteristics through direct and indirect effects, respectively. However, soil elements and enzymes impacted leaf stoichiometries barely, which was further confirmed by an overall redundancy analysis. In summary, C:N:P stoichiometry within the plant–soil continuum revealed that natural P. tabuliformis is a relatively stable ecosystem in the Loess Plateau, where the element exchanges between plant and soil maintain dynamic balance with forest development. Further studies are needed to capture the critical factors that regulate leaf stoichiometry in the soil system.

Funder

Natural Science Foundation of Shanxi Province

the project of scientific and technological innovation of Shanxi Agricultural University

postdoctoral program of Shanxi province

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3