Unraveling plant adaptation to nitrogen limitation from enzyme stoichiometry aspect in Karst soils: a case study of Rhododendron Pudingense

Author:

Wang Haodong,Huang Baoxian,Zhao Hongjiu,Dai Xiaoyong,Chen Meng,Ding Fangjun,Wu Peng,Hao Lei,Yang Rui,Yuan Congjun

Abstract

Enzyme stoichiometry can reflect the resource limitation of soil microbial metabolism, and research on the relationships between plants and resource limitation in Karst Microhabitats is scarcely investigated. To clarify the extracellular enzyme stoichiometry characteristics in soil across different karst microhabitats and how the Rhododendron pudingense adapts to nutrient restrictions, plot investigation experiments were set up in Zhenning County, Qinglong County, and Wangmo County of Guizhou Province which included total three karst microhabitats, i.e., soil surface (SS), rock gully (RG), and rock surface (RS), by analyzing he rhizosphere soil nutrient, extracellular enzyme activity, and nutrient content of R. pudingense. The findings indicated that all karst microenvironments experienced varying levels of nitrogen (N) limitation, with the order of N limitation being as follows: SS > RG > RS. Notably, there were significant discrepancies in N content among different plant organs (p< 0.05), with the sequence of N content as follows: leaf > stem > root. However, no significant differences were observed in nutrient content within the same organ across different microenvironments (p > 0.05). A noteworthy discovery was the significant allometric growth relationship between C-P in various organs (p< 0.05), while roots and stems exhibited a significant allometric growth relationship between N-P (p< 0.05). The study highlighted the substantial impact of Total Nitrogen (TN) and N-acquiring enzymes (NAE) on nutrient allocation within the components of R. pudingense. Overall, the research demonstrated that N was the primary limiting factor in the study area’s soil, and R. pudingense’s nutrient allocation strategy was closely associated with N limitations in the karst microenvironment. Specifically, the plant prioritized allocating its limited N resources to its leaves, ensuring its survival. This investigation provided valuable insights into how plants adapt to nutrient restrictions and offered a deeper understanding of soil-plant interactions in karst ecosystems.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3