Can Lower Carbon Aviation Fuels (LCAF) Really Complement Sustainable Aviation Fuel (SAF) towards EU Aviation Decarbonization?

Author:

Chiaramonti DavidORCID,Talluri Giacomo,Vourliotakis George,Testa LorenzoORCID,Prussi MatteoORCID,Scarlat Nicolae

Abstract

The present work provides an analysis of the potential impact of fossil-based Low Carbon Aviation Fuels (LCAF) for the European aviation sector, with a time horizon to 2050. LCAF are a crude-derived alternative to kerosene, offering some Green House Gas (GHG) savings, and have been defined by ICAO as eligible fuels for mitigating the environmental impact of aviation. A methodological framework to evaluate the EU technical potential for LCAF production is developed, based on data on crude utilization for jet fuel production in EU refineries, relevant carbon intensity reduction technologies, market prices, and aviation fuel volumes. Two different baselines for fossil-derived kerosene carbon intensity (CI) are considered: a global figure of 89 gCO2e/MJ and an EU-27-specific one of 93.1 gCO2eq/MJ. Three scenarios considering increasing levels of CI reduction are then defined, taking into account the current and potential commercial availability of some of the most relevant carbon intensity reduction technologies. The analysis demonstrates that, even if LCAF could offer GHG saving opportunities, their possible impact, especially when compared to the ambition level set in the most recent European legislative proposals, is very limited in most of the analysed scenarios, with the exception of the most ambitious ones. At 2030, a non-zero technical potential is projected only in the higher CI reduction scenario, ranging between 1.8% and 14.2% of LCAF market share in the EU-27 (equal to 0.6 to 4.75 Mtoe), depending on the considered Baseline for CI. At 2050, almost all considered scenarios project a larger technical potential, ranging between 6.9% and 22.2% for the global Baseline (2.21 to 7.13 Mtoe), and between 1.8% and 16.2% for the EU-27 Baseline (0.58 to 5.2 Mtoe). LCAF additional costs to current production costs are also discussed, given their relevance in large-scale deployment of these technologies, and are projected to range between 39 and 46.8 USD/toe.

Funder

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference49 articles.

1. Reducing Emissions from Aviationhttps://ec.europa.eu/clima/policies/transport/aviation_en

2. 2020 Worst Year in History for Air Travel Demandhttps://www.iata.org/en/pressroom/pr/2021-02-03-02/

3. EUROCONTROL Data Snapshot #2 on CO2 Emissions from Flights in 2020https://www.eurocontrol.int/publication/eurocontrol-data-snapshot-co2-emissions-flights-2020

4. 2030 Climate & Energy Frameworkhttps://ec.europa.eu/clima/policies/strategies/2030_en

5. Clean Energy for all Europeans Packagehttps://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3