CORSIA Lower Carbon Aviation Fuels: An Assessment of the Greenhouse Gas Emission Reduction Potential

Author:

Bauen Ausilio,Harris Anisha,Sim Christopher,Gudde Nick,Prussi MatteoORCID,Scarlat Nicolae

Abstract

Curbing aviation emissions is clear goal for the aviation sector, but it is a challenging task. At international level, the ICAO CORSIA initiative promotes the use of alternative fuels as a means to decarbonise flights. Among alternative fuels, lower carbon aviation fuels (LCAF) have been proposed under CORSIA. LCAF refers to a fossil fuel, which have been produced in a way that results in at least 10% lower lifecycle GHG emissions compared to a benchmark value. This paper analyses potential LCAF solutions for reducing GHG emissions of kerosene production and evaluates them relative to the ICAO baseline of 89.0 gCO2eq/MJ of fuel. The study analyses the levers that can reduce GHG upstream emissions (emissions from crude oil production) and refining emissions as well. This study shows that no one lever can reduce emissions to a sufficient level to meet the requirement of being a CORSIA-eligible fuel, and therefore that the deployment of multiple levers needed. Since jet fuel comprises only around 10% of total refining output, the LCAF measures could support the implementation of large, high-abatement cost changes, such as refinery-wide carbon capture and storage that affects multiple fuels.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Eurostat (2017). Energy, Transport and Environment Indicators, Eurostat.

2. EASA (2022). European Aviation Environmental Report, EASA.

3. EASA (2019). European Aviation Environmental Report 2019, EASA.

4. EC (2020). Sustainable and Smart Mobility Strategy—Putting European Transport on Track for the Future, European Commission. COM(2020) 789 final.

5. The challenge of forecasting the role of biofuel in EU transport decarbonisation at 2050: A meta-analysis review of published scenarios;Renew. Sustain. Energy Rev.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3