Evolution Prediction of Hysteresis Behavior of Sand under Cyclic Loading

Author:

Xia Pingxin,Shao Longtan,Deng WenORCID,Zeng Chao

Abstract

Soil cyclic degradation is a serious issue that should be considered in engineering design and maintenance. The hysteretic response causes strength degradation and excessive settlement of soil structure in engineered and natural geosystems. Hysteresis is essentially the coupling deformation of elastic and plastic components during reloading and unloading processes. Conventional hysteretic models for sand in the elastoplastic framework rely highly on yield surface or potential surface evolution and fall short on complexity and inaccuracy. This study proposes a decoupling method to describe the hysteretic response of sand. In contrast to the conventional elastoplastic approach, this decoupling method can directly decouple the elastic and plastic components by determining the boundary between the elastic strain extension domain and the plastic strain extension domain for each stress cycle. In this way, the elastic and plastic stress–strain branches during cyclic loading can be separately obtained, and the corresponding elastic and plastic parameters are employed to characterize mechanical behavior. With the respective evolution of elastic and plastic strains, the hysteretic behavior of sand is reproduced by combining all the branches. Finally, this decoupling method is validated by three conventional cyclic loading tests. The predictions are consistent with the experiments, indicating that the decoupling method is generally effective in describing the hysteretic behavior under cyclic loading. This decoupling method provides new insight to obtain elastic and plastic deformation behaviors separately, without recourse to complicated plastic surface and hardening law.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3