Behavior of Sand Specimens Subjected to Cyclic Loads under Drained and Undrained Conditions in Variable Loading Amplitudes

Author:

Thuy Do Van

Abstract

Dynamic loads with different magnitudes cause shear stress and strain in the soil and increase the pore water pressure, reducing soil strength and leading to structural failure. This article presents the behavior of natural river-sand specimens subjected to cyclic loads under both drained and undrained conditions, as observed in cyclic triaxial tests conducted in the laboratory. The experiments were performed on sand specimens with a relative compaction of 0.95 when changing the loading amplitude with three different levels of 30 kPa, 50 kPa and 60 kPa. Experimental results show that, under the condition of drained cycle load, the pore water pressure does not form; only accumulated strain and dynamic parameters are almost unchanged. Meanwhile, with the condition of undrained cyclic load, the pore water pressure increases and causes liquefaction of the specimen, then the axial strain increases dramatically and is not capable of recovery. When varying the loading amplitude under drained condition, the initial-strength values increase as the amplitude of the load increases. This trend has the opposite direction when testing under undrained condition, which means that when increasing the loading amplitude, the initial-strength values decrease and the liquefaction potential of the specimens is faster. Further, under the undrained condition, the loading amplitude of 30 kPa effect is almost negligible on the liquefaction ability of the specimen. Keywords: Sand, Drained condition, Undrained condition, Loading amplitude, Cyclic triaxial tests

Publisher

Jordan University of Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3