Abstract
Palm tree waste is one of the most widespread forms of agricultural waste, particularly in areas where oil palms are cultivated, and its management is one of the industry’s key concerns. To deal with this palm waste, researchers are working hard to work out the ways to convert this plentiful waste into useful material for future beneficial applications. The objective of this study was to employ chemical activation techniques to prepare a new activated carbon (AC) using discarded oil palm leaves (OPL) in Malaysia. Three chemical agents (H3PO4, NaOH and ZnCl2), as well as three pyrolysis temperatures (400 °C, 600 °C and 800 °C) and various impregnation ratios (1:0.5–1:3) were used to optimize the preparation process. As a result, the oil palm leaves activated carbon (OPLAC), with prominent surface properties, was obtained by ZnCl2 activations with a 1:1 impregnation ratio and carbonized at a pyrolysis temperature of 800 °C. The OPLAC-ZC had a surface area of 331.153 m2/g, pore size of 2.494 nm and carbon content of 81.2%. Results showed that the OPLAC-ZC was able to quickly (90 min) remove the chemical oxygen demand (COD) from produced water (PW), through chemical adsorption and an intraparticle diffusion mechanism. The material followed pseudo-second order kinetic and Freundlich isotherm models. The maximum adsorption capacity of organic pollutants forming COD in PW was found to be 4.62 mg/g (59.6 ± 5%). When compared to previous studies, the OPLAC-ZC showed equivalent or better COD removal capability. It is the first detailed study reporting the preparation of AC from OPL and applying it for organic pollutants adsorption forming COD in PW.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献