Modified Activated Carbon Synthesized from Oil Palm Leaves Waste as a Novel Green Adsorbent for Chemical Oxygen Demand in Produced Water

Author:

Khurshid HifsaORCID,Mustafa Muhammad Raza UlORCID,Isa Mohamed Hasnain

Abstract

Palm tree waste is one of the most widespread forms of agricultural waste, particularly in areas where oil palms are cultivated, and its management is one of the industry’s key concerns. To deal with this palm waste, researchers are working hard to work out the ways to convert this plentiful waste into useful material for future beneficial applications. The objective of this study was to employ chemical activation techniques to prepare a new activated carbon (AC) using discarded oil palm leaves (OPL) in Malaysia. Three chemical agents (H3PO4, NaOH and ZnCl2), as well as three pyrolysis temperatures (400 °C, 600 °C and 800 °C) and various impregnation ratios (1:0.5–1:3) were used to optimize the preparation process. As a result, the oil palm leaves activated carbon (OPLAC), with prominent surface properties, was obtained by ZnCl2 activations with a 1:1 impregnation ratio and carbonized at a pyrolysis temperature of 800 °C. The OPLAC-ZC had a surface area of 331.153 m2/g, pore size of 2.494 nm and carbon content of 81.2%. Results showed that the OPLAC-ZC was able to quickly (90 min) remove the chemical oxygen demand (COD) from produced water (PW), through chemical adsorption and an intraparticle diffusion mechanism. The material followed pseudo-second order kinetic and Freundlich isotherm models. The maximum adsorption capacity of organic pollutants forming COD in PW was found to be 4.62 mg/g (59.6 ± 5%). When compared to previous studies, the OPLAC-ZC showed equivalent or better COD removal capability. It is the first detailed study reporting the preparation of AC from OPL and applying it for organic pollutants adsorption forming COD in PW.

Funder

YAYASAN UTP

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3