Numerical Modelling of Vibration Responses of Helical Gears under Progressive Tooth Wear for Condition Monitoring

Author:

Sun Xiuquan,Wang Tie,Zhang Ruiliang,Gu FengshouORCID,Ball Andrew D.ORCID

Abstract

Gear wear is a common fault that occurs in a gear transmission system that degrades the operating efficiency and may cause other catastrophic failures such as tooth breakage and fatigue. The progressive wear of a helical gear and its influences on vibration responses are rarely investigated due to the combined effects of the complicated lubrication state and the time-varying characteristic. To fill this gap, a numerical study was put forward to investigate the interactions between gear wear and dynamic response. In this study, an Archard’s wear model with elastohydradynamic lubrication (EHL) effect is adopted to simulate the helical gear wear, which is incorporated with an eight-degree of freedom dynamic model for understanding the gear dynamic at different wear degrees. The wear model shows that the gear wear mainly happens at the gear root due to the relative high slide-to-roll ratio. The dynamic modelling results demonstrate that the wear causes a reduction in time-varying gear mesh stiffness further leads to more vibration. Besides, the simulated vibration responses and experimental validation show that the wear cause increases in the amplitudes of the gear mesh frequency and its harmonics, which can reflect the evolution of progressive gear wear and can be used as monitoring features of gear wear.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3