Simulation of Natural Convection in a Concentric Hexagonal Annulus Using the Lattice Boltzmann Method Combined with the Smoothed Profile Method

Author:

Alapati SureshORCID

Abstract

This research work presents results obtained from the simulation of natural convection inside a concentric hexagonal annulus by using the lattice Boltzmann method (LBM). The fluid flow (pressure and velocity fields) inside the annulus is evaluated by LBM and a finite difference method (FDM) is used to get the temperature filed. The isothermal and no-slip boundary conditions (BC) on the hexagonal edges are treated with a smooth profile method (SPM). At first, for validating the present simulation technique, a standard benchmarking problem of natural convection inside a cold square cavity with a hot circular cylinder is simulated. Later, natural convection simulations inside the hexagonal annulus are carried out for different values of the aspect ratio, AR (ratio of the inner and outer hexagon sizes), and the Rayleigh number, Ra. The simulation results are presented in terms of isotherms (temperature contours), streamlines, temperature, and velocity distributions inside the annulus. The results show that the fluid flow intensity and the size and number of vortex pairs formed inside the annulus strongly depend on AR and Ra values. Based on the concentric isotherms and weak fluid flow intensity at the low Ra, it is observed that the heat transfer inside the annulus is dominated by the conduction mode. However, multiple circulation zones and distorted isotherms are observed at the high Ra due to the strong convective flow. To further access the accuracy and robustness of the present scheme, the present simulation results are compared with the results given by the commercial software, ANSYS-Fluent®. For all combinations of AR and Ra values, the simulation results of streamlines and isotherms patterns, and temperature and velocity distributions inside the annulus are in very good agreement with those of the Fluent software.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3