Simulation of an Elastic Rod Whirling Instabilities by Using the Lattice Boltzmann Method Combined with an Immersed Boundary Method

Author:

Alapati Suresh1ORCID,Che Wooseong1,Rao Sunkara Srinivasa2ORCID,Phan Giang T. T.34ORCID

Affiliation:

1. Department of Mechatronics Engineering, Kyungsung University, 309 Suyeong-ro, Nam-gu, Busan 48434, Republic of Korea

2. Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad 500043, Telangana, India

3. Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam

4. Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam

Abstract

Mathematical modeling and analysis of biologically inspired systems has been a fascinating research topic in recent years. In this work, we present the results obtained from the simulation of an elastic rod (that mimics a flagellum axoneme) rotational motion in a viscous fluid by using the lattice Boltzmann method (LBM) combined with an immersed boundary method (IBM). A finite element model consists of a set of beam and truss elements used to discretize the flagellum axoneme while the fluid flow is solved by the well-known LBM. The hydrodynamic coupling to maintain the no-slip boundary condition between the fluid and the elastic rod is conducted with the IBM. The rod is actuated with a torque applied at its base cross-section that acts as a driving motor of the axoneme. We simulated the rotational dynamics of the rod for three different rotational frequencies (low, medium, and high) of the motor. To compare with previous publication results, we chose the sperm number Sp=L(4πμω)/(EI)1/4 as the validation parameter. We found that at the low rotational frequency, f = 1.5 Hz, the rod performs stable twirling motion after attaining an equilibrium state (the rod undergoes rigid rotation about its axis). At the medium frequency, f = 2.65 Hz, the rod undergoes whirling motion, where the tip of the rod rotates about the central rotational axis of the driving motor. When the frequency increases further, i.e., when it reaches the critical value, fc ≈ 2.7 Hz, the whirling motion becomes over-whirling, where the tip of the filament falls back to the base and performs a steady crank-shafting motion. All three rotational dynamics, twirling, whirling, and over-whirling, and the critical value of rotational frequency are in good agreement with the previously published results. We also observed that our present simulation technique is computationally more efficient than previous works.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3