A New Electric Field Mill Network to Estimate Temporal Variation of Simplified Charge Model in an Isolated Thundercloud

Author:

Yamashita KozoORCID,Fujisaka Hironobu,Iwasaki Hiroyuki,Kanno Kakeru,Hayakawa Masashi

Abstract

The gross charge distribution in an electrified cloud has already been estimated by polarity distribution of the electrostatic field on the ground surface. While either a dipole or a tripole charge structure is commonly accepted, the increase–decrease and motion of each point charge in those models are both still unclear. This paper presents a new network of electric field mills for multipoint electrostatic measurement to evaluate the temporal variations of a simple cloud charge model with second-scale resolution. Details of our newly developed equipment are described, with an emphasis on its advantages. This network was deployed in the north Kanto area of Japan and operated during the summer season in 2020. In order to simplify the relationship between cloud charge positions and the horizontal distribution of the measured electrostatic field, an isolated thundercloud is focused on. As an initial analysis, a negative point charge model is applied to an isolated cloud observed on 27 August 2020. The quantity and height of the point charge were estimated as being approximately −20 C and 7 km, respectively. The calculated charge location is generally coincident with the C-band radar echo regions. Significant correspondence is demonstrated between the intensity distribution of the electrostatic fields measured at seven sites and that calculated with estimated point charge. This result indicates the possibility to determine the amounts and positions of cloud charges inside the dipole charge structure based on multipoint measurement of the electrostatic field.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3