Analog Sensor Interface for Field Mill Sensors in Atmospheric Applications

Author:

Agorastou ZoiORCID,Noulis ThomasORCID,Siskos Stylianos

Abstract

An overview of the electric field mill sensor specifications in applications related to the measurement of the atmospheric electric field was conducted. The different design approaches of the field mill sensor interface are presented and analyzed, while the sensitivity-related parameters of a field mill are discussed. The design of a non-complex analog sensor interface that can be employed for the measurement of the electric field in both fair and foul weather conditions, such as thunderstorms, is implemented using discrete components for experimental validation and is optimized in an integrated version in terms of noise and power consumption. Advanced noise simulations are conducted in a 180 nm CMOS process (XH018 XFAB). The energy-autonomous operation of the sensor for extended periods of time is made feasible due to the low power consumption of the front-end circuitry (165 μW at 3 V) as well as the proposed intermittent style of operation of the motor. The total sensing system is low power, and its realization is simple and cost-effective, while also offering adequate sensitivity (45 mV/kV/m), making it comparable to the existing works.

Funder

European Regional Development Fund of the European Union

Greek national funds

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3