Study of Water–Sand Inrush through a Vertical Karst Conduit Uncovered through Tunnel Excavation

Author:

Zhao Zhenhua12,Wang Hailong1234ORCID,Han Lin12,Zhao Zhenlong3

Affiliation:

1. No.801 Hydrogeology and Engineering Geological Brigade of Shandong Provincial Bureau of Geology and Mineral Resources, Jinan 250014, China

2. Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan 250014, China

3. School of Civil Engineering and Architecture, Linyi University, Linyi 276000, China

4. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

Abstract

The existence of karst compromises the safety of underground engineering, especially during tunnel excavations. Karst conduits are uncovered through tunnel excavations, which may lead to a water–sand inrush disaster. Taking a vertical karst conduit as an example, the process of water–sand inrush through a karst conduit could be viewed as being similar to the process whereby a water–sand mixture flows through the discharge opening of a storage bin. In this study, based on force analysis of a non-aqueous sand body above a karst conduit, the limiting diameter of the karst conduit under force equilibrium was obtained. Considering the effect of water on aqueous sand bodies, the criterion of water–sand inrush was established. We aimed to study water–sand migration and inrush through vertical karst conduits in order to obtain the distribution of the water pressure near a vertical karst conduit, and to explore the relationship between the conduit size, water pressure, and water–sand flow rate; therefore, a simulated testing system for analyzing water–sand inrush through a vertical karst conduit was developed. When the water pressure in the testing chamber was close to the critical head pressure of the water–sand inrush, the water–sand inrush exhibited a pattern of instability—migration—deposition—stability. When the water pressure in the testing chamber exceeded the critical head pressure, the water–sand flow increased first and then stabilized over time. With the increase in the set values of the water pressure and conduit size, the steady flow of the water–sand mixture increased gradually. When the karst conduit was opened suddenly, the actual water pressure in the testing chamber decreased significantly, due to the water–sand mixture flowing out of the testing chamber and the water supply lagging behind. With the stabilization of the water–sand flow, the actual water pressure gradually tended towards stability, but it was still lower than the initial set water pressure. When the karst conduit was opened, the values of the water pressure monitored by the pore pressure gauges all clearly decreased. With the stabilization of the water–sand flow, the water pressure gradually became stable. With the increase in the distance between the pore pressure sensor and the karst conduit, the water pressure values all increased gradually. These test results are significant for further studies of the formation mechanisms of water–sand inrush through vertical karst conduits.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3