Development and experimental validation of analytical models for water and mud inrushes through a filled karst conduit

Author:

Wu Xingjie,Yang Xuxu,Jing Hongwen

Abstract

AbstractWater or mud inrush has become a common geological disaster during tunnel construction in karst areas. To study forming process and mechanism of water and mud inrushes through a filled karst conduit, water inrush and mud inrush model tests were carried out with a self-developed 3D model test system. The results show that the forming processes of water inrush and mud inrush have different forming modes. For water inrush, the forming process follows: flowing instability of filling material particles—formation of water inrush channel—water inrush occurring; while for mud inrush, the forming process follows: stability—sliding instability of the whole filling material suddenly—mud inrush occurring. Accordingly, a local instability model of critical hydraulic pressure causing water inrush and an integral sliding instability model of critical hydraulic pressure causing mud inrush were established respectively. The two analytical models reveal the mechanism of water inrush and mud inrush experiments to an extent. The calculated critical hydraulic pressures for water inrush and mud inrush are in good agreement with the test results. The distinguishment of water inrush and mud inrush through a karst conduit was discussed based on the critical hydraulic pressure and the evolution law of seepage water pressure in tests, and a criterion was given. The research results might provide guidance for the forecast of water and mud inrush disasters during the construction of tunnels in karst area.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3