Low-Cost Sensors State Estimation Algorithm for a Small Hand-Launched Solar-Powered UAV

Author:

Guo ,Zhou ,Zhu ,Bai

Abstract

In order to reduce the cost of the flight controller and improve the control accuracy of solar-powered unmanned aerial vehicle (UAV), three state estimation algorithms based on the extended Kalman filter (EKF) with different structures are proposed: Three-stage series, full-state direct and indirect state estimation algorithms. A small hand-launched solar-powered UAV without ailerons is used as the object with which to compare the algorithm structure, estimation accuracy, and platform requirements and application. The three-stage estimation algorithm has a position accuracy of 6 m and is suitable for low-cost small, low control precision UAVs. The precision of full-state direct algorithm is 3.4 m, which is suitable for platforms with low-cost and high-trajectory tracking accuracy. The precision of the full-state indirect method is similar to the direct, but it is more stable for state switching, overall parameters estimation, and can be applied to large platforms. A full-scaled electric hand-launched UAV loaded with the three-stage series algorithm was used for the field test. Results verified the feasibility of the estimation algorithm and it obtained a position estimation accuracy of 23 m.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. Pathfinder. Developing a solar rechargeable aircraft

2. Design of small hand-launched solar-powered UAVs: From concept study to a multi-day world endurance record flight

3. AC Propulsion’s Solar Electric Powered SoLong UAV;Cocconi,2005

4. Robotic technologies for solar-powered UAVs: Fully autonomous updraft-aware aerial sensing for multiday search-and-rescue missions;Oettershagen;J. Field Robot.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3