Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models

Author:

Guo An1ORCID,Mu Shanshan2,Zhou Zhou3,Tang Jiwei4

Affiliation:

1. School of Electronic Engineering, Xi’an Shiyou University, Xi’an, China

2. National Key Laboratory of Strength and Structural Integrity, Aircraft Strength Institute of China, Xi’an, China

3. School of Aeronautics, Northwestern Polytechnical University, Xi’an, China

4. School of Aeronautics and Astronautics, Shanghai Jiaotong University, Shanghai, China

Abstract

Solar-powered UAVs are characterized by large-scale, lightweight, and low airspeed, and changes in airspeed lead to wing deformation or stalling, which can easily induce serious flight accidents. A single dynamic model cannot accurately describe this feature, and this airspeed sensitivity can only be analyzed by integrating rigid-body, multirigid-body, and rigid-flexible combo models. This paper proposes a dynamic analysis method for a mixture of rigid-body, multirigid-body, and rigid-flexible combo models, considering the applicable airspeed ranges, computational costs, and structural deformation assumptions of the three models and comparing the differences of modes and responses at different airspeeds, and quantitatively analyzes the effects of airspeed on the motion, deformation, and coupling. The results show that appropriate increase of airspeed is beneficial to the stability of large-scale lightweight platforms, but when it is increased to more than two times the cruise speed, the structural deformation is coupled with the flight dynamic modes, leading to the deterioration of the overall dynamic response. Finally, a mixture of the three models at different airspeeds is proposed, which is necessary for future ultralarge-scale solar-powered UAVs.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3