Abstract
Sterols, especially cholesterol (Chl), are fundamental for animal survival. Insects lacking the ability to synthesize Chl are sterol auxotrophic animals and utilize dietary Chl and phytosterols to survive. The sterols obtained from a diet are distributed to the tissues; however, sterol homeostasis in insect tissues remains to be elucidated. This study sought to understand the sterol characteristics of insect tissues through detailed sterol quantification and statistics. The combination of sterol quantification using liquid chromatography tandem mass spectrometry (LC-MS/MS) and principal component analysis (PCA) revealed tissue-specific sterol characteristics in the silkworm, Bombyx mori, a phytophagous insect. We found that insect tissues have tissue-intrinsic sterol profiles. The brain has a unique sterol composition as compared to other tissues—high concentration of Chl and less accumulation of phytosterols. Other tissues also have intrinsic sterol characteristics, which when defined by dietary sterols or Chl metabolites, indicate preference for a sterol and consistently manage their own sterol homeostasis. Though most tissues never change sterol profiles during development, the brain drastically changes its sterol profile at the wandering stage, indicating that it could alter sterol composition in preparation for metamorphosis. These results suggest the existence of tissue- and sterol-specific systems for sterol homeostasis in insects.
Funder
Japan Society for the Promotion of Science
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献