Optimization and Validation of a Method Based on QuEChERS Extraction and Gas Chromatographic-Mass Spectrometric Analysis for the Determination of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Olive Fruits Irrigated with Treated Wastewaters

Author:

Bruzzoniti Maria ConcettaORCID,Rivoira LucaORCID,Castiglioni MicheleORCID,Cagno EnricoORCID,Kettab Ahmed,Fibbi Donatella,Del Bubba MassimoORCID

Abstract

The wastewater reuse is an important measure to face water shortage, thus improving the resilience of agricultural production chains. However, treated wastewater can contain residual organic micropollutants residues that may result in crop contamination. Among edible crops, olive is the most important agricultural product in the Mediterranean region. Methods to assess the contamination of organic micropollutants such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in olives are poorly investigated. Given the complexity of olives, this study focused on the development and validation of a method for the simultaneous extraction of PAHs and PCBs from olives, and subsequent analysis by gas chromatography coupled with mass spectrometry detection. Extraction was optimized through a QuEChERS protocol, studying the effect of the extraction solvent (CH2Cl2, cyclohexane, CH3CN) and of the dispersive-solid phase extraction (d-SPE) sorbent (octadecyl silica, Florisil, primary secondary amine, Z-Sep) on the recovery of micropollutants. The best recoveries (94–122%, relative standard deviations below 5%) were obtained using CH3CN/H2O and a double purification step with Z-Sep and Florisil. The method developed for PAHs and PCBs, which showed good intra-day (<2.7%) and inter-day (<2.9%) precision and low matrix effect (|ME| < 14%), was applied to the analysis of olives grown by irrigation with reclaimed wastewaters.

Funder

European Commission

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3