Low-Cost and Eco-Friendly Hydroxyapatite Nanoparticles Derived from Eggshell Waste for Cephalexin Removal

Author:

Alhasan Huda S.ORCID,Alahmadi Nadiyah,Yasin Suhad A.ORCID,Khalaf Mohammed Y.,Ali Gomaa A. M.ORCID

Abstract

This work describes the hydroxyapatite nanoparticle (HAP) preparation from eggshell waste and their application as an adsorbent for Cephalexin (Ceph) antibiotic removal from aqueous solutions. Chemical precipitation with phosphoric acid was used to evaluate the feasibility of calcium oxide for HAP preparation. The structural properties of HAP were characterized by X-ray diffraction, which revealed the formation of the hydroxyapatite crystalline phase formation. In addition, transmitting electron spectroscopy showed an irregular shape with a variation in size. The impact of various experimental conditions on the removal efficiency such as the solution’s pH, contact time, HAP mass, solution temperature, and Ceph concentration were studied. Experimental data showed that HAP could remove most Ceph species from aqueous solutions within 1 h at pH = 7 with 70.70% adsorption efficiency utilizing 50 mg of the HAP. The removal process of Ceph species by HAP was kinetically investigated using various kinetic models, and the results showed the suitability of the pseudo-second-order kinetic model for the adsorption process description. Moreover, the removal process was thermodynamically investigated; the results showed that the removal was spontaneous endothermic and related to the randomness increase. The data confirmed that HAP had high efficiency in removing Ceph antibiotics from an aqueous solution.

Funder

United States Agency for International Development

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3