Effective Solid Phase Extraction of Toxic Pyrrolizidine Alkaloids from Honey with Reusable Organosilyl-Sulfonated Halloysite Nanotubes

Author:

Schlappack Tobias,Weidacher Nina,Huck Christian W.ORCID,Bonn Günther K.,Rainer MatthiasORCID

Abstract

Pyrrolizidine alkaloids are plant secondary metabolites that have recently attracted attention as toxic contaminants in various foods and feeds as they are often harvested by accident. Furthermore, they prove themselves as hard to analyze due to their wide structural range and low concentration levels. However, even low concentrations show toxic behavior in the form of chronic liver diseases and possible carcinogenicity. Since sample preparation for this compound group is in need of more green and sustainable alternatives, modified halloysite nanotubes present an interesting approach. Based on the successful use of sulfonated halloysite nanotubes as inexpensive, easy-to-produce cation exchangers for solid phase extraction in our last work, this study deals with the further modification of the raw nanotubes and their performance in the solid phase extraction of pyrrolizidine alkaloids. Conducting already published syntheses of two organosilyl-sulfonated halloysite nanotubes, namely HNT-PhSO3H and HNT-MPTMS-SO3H, both materials were used as novel materials in solid phase extraction. After the optimization of the extraction protocol, extractions of aqueous pyrrolizidine alkaloid mixtures showed promising results with recoveries ranging from 78.3% to 101.3%. Therefore, spiked honey samples were extracted with an adjusted protocol. The mercaptopropyl-sulfonated halloysite nanotubes revealed satisfying loading efficiencies and recoveries. Validation was then performed, which displayed acceptable performance for the presented method. In addition, reusability studies using HNT-MPTMS-SO3H for solid phase extraction of an aqueous pyrrolizidine alkaloid mixture demonstrated excellent results over six cycles with no trend of recovery reduction or material depletion. Therefore, organosilyl-sulfonated halloysite nanotubes display a green, efficient and low-cost alternative to polymeric support in solid phase extraction of toxic pyrrolizidine alkaloids from complex honey matrix.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3