Retention Time Prediction with Message-Passing Neural Networks

Author:

Osipenko SergeyORCID,Nikolaev Eugene,Kostyukevich Yury

Abstract

Retention time prediction, facilitated by advances in machine learning, has become a useful tool in untargeted LC-MS applications. State-of-the-art approaches include graph neural networks and 1D-convolutional neural networks that are trained on the METLIN small molecule retention time dataset (SMRT). These approaches demonstrate accurate predictions comparable with the experimental error for the training set. The weak point of retention time prediction approaches is the transfer of predictions to various systems. The accuracy of this step depends both on the method of mapping and on the accuracy of the general model trained on SMRT. Therefore, improvements to both parts of prediction workflows may lead to improved compound annotations. Here, we evaluate capabilities of message-passing neural networks (MPNN) that have demonstrated outstanding performance on many chemical tasks to accurately predict retention times. The model was initially trained on SMRT, providing mean and median absolute cross-validation errors of 32 and 16 s, respectively. The pretrained MPNN was further fine-tuned on five publicly available small reversed-phase retention sets in a transfer learning mode and demonstrated up to 30% improvement of prediction accuracy for these sets compared with the state-of-the-art methods. We demonstrated that filtering isomeric candidates by predicted retention with the thresholds obtained from ROC curves eliminates up to 50% of false identities.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3