CFM-ID 3.0: Significantly Improved ESI-MS/MS Prediction and Compound Identification

Author:

Djoumbou-Feunang Yannick,Pon Allison,Karu Naama,Zheng Jiamin,Li Carin,Arndt David,Gautam Maheswor,Allen FelicityORCID,Wishart David S.

Abstract

Metabolite identification for untargeted metabolomics is often hampered by the lack of experimentally collected reference spectra from tandem mass spectrometry (MS/MS). To circumvent this problem, Competitive Fragmentation Modeling-ID (CFM-ID) was developed to accurately predict electrospray ionization-MS/MS (ESI-MS/MS) spectra from chemical structures and to aid in compound identification via MS/MS spectral matching. While earlier versions of CFM-ID performed very well, CFM-ID’s performance for predicting the MS/MS spectra of certain classes of compounds, including many lipids, was quite poor. Furthermore, CFM-ID’s compound identification capabilities were limited because it did not use experimentally available MS/MS spectra nor did it exploit metadata in its spectral matching algorithm. Here, we describe significant improvements to CFM-ID’s performance and speed. These include (1) the implementation of a rule-based fragmentation approach for lipid MS/MS spectral prediction, which greatly improves the speed and accuracy of CFM-ID; (2) the inclusion of experimental MS/MS spectra and other metadata to enhance CFM-ID’s compound identification abilities; (3) the development of new scoring functions that improves CFM-ID’s accuracy by 21.1%; and (4) the implementation of a chemical classification algorithm that correctly classifies unknown chemicals (based on their MS/MS spectra) in >80% of the cases. This improved version called CFM-ID 3.0 is freely available as a web server. Its source code is also accessible online.

Funder

Genome Alberta

Canadian Institutes of Health Research

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3