Selective H2 Evolution and CO2 Absorption in Electrolysis of Ethanolamine Aqueous Solutions

Author:

Fukada Satoshi1,Sakai Ryosuke1,Oya Makoto1,Katayama Kazunari1

Affiliation:

1. Department of Advanced Energy Engineering Science, Kyushu University, Fukuoka 816-8581, Japan

Abstract

Selective H2 evolution and CO2 absorption in several ethanolamine aqueous solutions are comparatively investigated using a new electrolysis reactor. H2 bubbles are generated from a cathode in any ethanolamine electrolyte, and its experimental gas evolution rates are correlated by Faraday’s first rule. No or smaller amounts of CO2 and N2 bubbles than stoichiometric ones are generated on an anode through the reaction between hydroxide ions and ethanolamine ones. No CO or O2 is observed in the system exhaust, and most of the CO2, along with N2, is still absorbed in ethanolamine aqueous solutions with the addition of KOH and/or HCOOH under high pH conditions. Variations of the concentrations of coexisting ions dissolved in the electrolytes of mono- or tri-ethanolamine (MEA or TEA) and ethylenediamine (EDA) solutions with CO2 absorption are calculated using the equilibrium constants to relate the concentrations of solute ions. Electric resistivities of the ethanolamine aqueous solutions are correlated by the pH value and are analyzed in terms of equilibrium constants among the concentrations of coexisting ions. Conditions of the MEA electrolyte to achieve high-performance electrolysis is discussed for selective H2 generation.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3