Hydrogen production from water electrolysis: role of catalysts

Author:

Wang Shan,Lu Aolin,Zhong Chuan-Jian

Abstract

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3