Mass Transfer and Droplet Behaviors in Liquid-Liquid Extraction Process Based on Multi-Scale Perspective: A Review

Author:

Yu Sicen1,Zhang Jiyizhe1,Li Shaowei12,Chen Zhuo1,Wang Yundong1

Affiliation:

1. State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

Abstract

Liquid-liquid extraction is an important separation technology in the chemical industry, and its separation efficiency depends on thermodynamics (two-phase equilibrium), hydrodynamics (two-phase mixing and contact), and mass transfer (molecular diffusion). For hydrodynamics, the dispersion size of droplets reflects the mixing of two phases and determines the mass transfer contact area of the two phases. Therefore, a deep understanding of the droplet dispersion mechanism can help guide process intensification. The mass transfer and droplet behaviors in the liquid-liquid extraction process are reviewed based on three scales: equipment, droplets, and the interface between two liquids. Studies on the interaction between mass transfer and other performance parameters in extraction equipment as well as liquid-liquid two-phase flow models are reviewed at the equipment scale. The behaviors of droplet breakage and coalescence and the kernel function of the population balance equation are reviewed at the droplet scale. Studies on dynamic interfacial tension and interaction between interfaces are reviewed at the interface scale. Finally, the connection among each scale is summarized, the existing problems are analyzed, and some future research directions are proposed in the last section.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3