Precise Modeling of the Particle Size Distribution in Emulsion Polymerization: Numerical and Experimental Studies for Model Validation under Ab Initio Conditions

Author:

López-Domínguez Porfirio1ORCID,Saldívar-Guerra Enrique1ORCID,Trevino María Esther1ORCID,Zapata-González Iván1

Affiliation:

1. Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Mexico

Abstract

The particle size distribution (PSD) in emulsion polymerization (EP) has been modeled in the past using either the pseudo bulk (PB) or the 0-1/0-1-2 approaches. There is some controversy on the proper type of model to be used to simulate the experimental PSDs, which are apparently broader than the theoretical ones. Additionally, the numerical technique employed to solve the model equations, involving hyperbolic partial differential equations (PDEs) with moving and possibly steep fronts, has to be precise and robust, which is not a trivial matter. A deterministic kinetic model for the PSD evolution of ab initio EP of vinyl monomers was developed to investigate these issues. The model considers three phases, micellar nucleation, and particles that can contain n≥0 radicals. Finite volume (FV) and weighted-residual methods are used to solve the system of PDEs and compared; their limitations are also identified. The model was validated by comparing predictions with data of monomer conversion and PSD for the batch emulsion homopolymerization of styrene (Sty) and methyl methacrylate (MMA) using sodium dodecyl sulfate (SDS)/potassium persulfate (KPS) at 60 °C, as well as the copolymerization of Sty-MMA (50/50; mol/mol) at 50 and 60 °C. It is concluded that the PB model has a structural problem when attempting to adequately represent PSDs with steep fronts, so its use is discouraged. On the other hand, there is no generalized evidence of the need to add a stochastic term to enhance the PSD prediction of EP deterministic models.

Funder

Centro de Investigación en Química Aplicada

Consejo Nacional de Humanidades, Ciencia y Tecnología

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3