Effect of Temperature on Diluate Water in Batch Electrodialysis Reversal

Author:

Dévora-Isiordia Germán EduardoORCID,Ayala-Espinoza Alejandra,Lares-Rangel Luis Alberto,Encinas-Guzmán María Isela,Sánchez-Duarte Reyna Guadalupe,Álvarez-Sánchez JesúsORCID,Martínez-Macías María del RosarioORCID

Abstract

A high percentage of the agricultural wells in the state of Sonora are overexploited, thus generating a significant degree of saline intrusion and abandonment by nearby communities. In this paper, the effect of temperature on the final concentration of diluted water was evaluated with variations in voltage and input concentration in a batch electrodialysis reversal (EDR) process in order to find the optimal operating conditions, with an emphasis on reducing the energy consumption and cost of desalinated water. Thirty-six samples were prepared: eighteen samples of 2000 mg/L total dissolved solids (TDS) and eighteen samples of 5000 mg/L TDS; brackish well water of 639 mg/L TDS and synthetic salt were mixed to obtain these concentrations. Three different temperatures (25, 30, and 35 °C) and two different voltages (10 and 20 V) were tested for each sample after evaluating the limiting current density. The best salt removal occurred in the 20 V sets, with 18.34% higher removal for the 2000 mg/L TDS experiments and 25.05% for the 5000 mg/L experiments (average between the 25 to 35 °C tests). The temperature positively affected the EDR, especially in the experiments at 10 V, where increasing by 10 °C increased the efficiency by 10.83% and 24.69% for 2000 and 5000 mg/L TDS, respectively. The energy consumption was lower with increasing temperature (35 °C), as it decreased by 1.405% and 1.613% for the 2000 and 5000 mg/L TDS concentrations, respectively (average between the 10 and 20 V tests), thus decreasing the cost per m3 of water.

Funder

Research Promotion and Support Program

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3