Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System

Author:

Armendáriz-Ontiveros María MagdalenaORCID,Dévora-Isiordia Germán EduardoORCID,Rodríguez-López Jorge,Sánchez-Duarte Reyna Guadalupe,Álvarez-Sánchez JesúsORCID,Villegas-Peralta Yedidia,Martínez-Macias María del RosarioORCID

Abstract

Reverse osmosis (RO) desalination is considered a viable alternative to reduce water scarcity; however, its energy consumption is high. Photovoltaic (PV) energy in desalination processes has gained popularity in recent years. The temperature is identified as a variable that directly affects the behavior of different parameters of the RO process and energy production in PV panels. The objective of this study was to evaluate the effect of temperature on energy consumption and polarization factor in desalination processes at 20, 23, 26 and 30 °C. Tests were conducted on a RO desalination plant driven by a fixed 24-module PV system that received spray cooling in the winter, spring and summer seasons. The specific energy consumption was lower with increasing process feed temperature, being 4.4, 4.3, 3.9 and 3.5 kWh m−3 for temperatures of 20, 23, 26 and 30 °C, respectively. The water temperature affected the polarization factor, being lower as the temperature increased. The values obtained were within the limits established as optimal to prevent the formation of scaling on the membrane surface. The spray cooling system was able to decrease the temperature of the solar cells by about 6.2, 13.3 and 11.5 °C for the winter, spring and summer seasons, respectively. The increase in energy production efficiency was 7.96–14.25%, demonstrating that solar cell temperature control is a viable alternative to improve power generation in solar panel systems.

Funder

PROFAPI-ITSON

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3