Enhancement of the Green Extraction of Bioactive Molecules from Olea europaea Leaves

Author:

Valinger Davor,Kušen Matea,Benković Maja,Jurina TamaraORCID,Panić Manuela,Radojčić Redovniković Ivana,Kljusurić Jasenka GajdošORCID,Tušek Ana Jurinjak

Abstract

Olive leaves are a rich source of polyphenols that have beneficial antihypertensive, hypocholesterolemic, cardioprotective, and anti-inflammatory effects. The aim of this study was to compare the efficiency of conventional extraction (CE), microwave-assisted extraction (MWE), and microwave–ultrasound-assisted extraction (MWUE) for the extraction of bioactive molecules from olive leaves using water as a solvent and to define the optimal extraction conditions for all three methods used. CE conditions (temperature, time, magnetic stirrer rotational rate and particle diameter) and MWE extraction and MWUE conditions (microwave power, time, particle diameter, and temperature) were optimized using response surface methodology (RSM) based on the Box–Behnken experimental design. The total polyphenol content and antioxidant activity of all prepared extracts was analyzed and compared. The results showed that MWUE provided the highest amount of total polyphenols (Total Polyphenolic Content (TPC) = 273.779 ± 4.968 mgGAE gd.m.−1) and the highest antioxidant activity, which was about 3.1 times higher than CE. Optimal extraction conditions were determined to be 80 °C, 15 min, 200 μm, and 750 min-1 for CE, 700 W, 7.5 min, 300 μm, and 80 °C for MWE, and 800 W, 5 min, 100 μm, and 60 °C for MWUE. Considering the maximum amount of total polyphenols extracted, the results suggest that MWUE is the most effective green extraction process that extracted the highest amount of polyphenols and could be used by the food industry for commercial exploitation of currently unprofitable plant bioactive sources.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3