Abstract
Over the last decade, the development of machine-learning models has enabled the design of sophisticated regression models. For this reason, studies have been conducted to design predictive models using machine learning in various industries. In particular, in terms of inventory management, forecasting models predict historical market demand, predict future demand, and enable systematic inventory management. However, in most small and medium enterprise (SMEs), there is no systematic management of data, and because of the lack of data and the volatility of random data, it is difficult for prediction models to work well. Since the predictive model is a core function derived from the management of the enterprise’s inventory data, the poor performance of the model causes the company’s inventory data-management system to be degraded. Companies that have poor inventory data because of this vicious cycle will continue to have difficulty introducing data-management systems. In this paper, we propose a framework that can reliably predict the inventory data of a firm by modeling the volatility of a firm stochastically. The framework makes the prediction using the point prediction model by means of LSTM(Long Short Term Memory), the 2D kernel density function, and the prediction result reflecting inventory-management cost. Through various experiments, the necessity of interval prediction in demand prediction and the validity of the cost-effective prediction model through the readjustment function were shown.
Funder
Minstry of SMEs and Startups
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献