Abstract
Clustering is a classification method that organizes objects into groups based on their similarity. Data clustering can extract valuable information, such as human behavior, trends, and so on, from large datasets by using either hard or fuzzy approaches. However, this is a time-consuming problem due to the increasing volumes of data collected. In this context, sequential executions are not feasible and their parallelization is mandatory to complete the process in an acceptable time. Parallelization requires redesigning algorithms to take advantage of massively parallel platforms. In this paper we propose a novel parallel implementation of the fuzzy minimals algorithm on graphics processing unit as a high-performance low-cost solution for common clustering issues. The performance of this implementation is compared with an equivalent algorithm based on the message passing interface. Numerical simulations show that the proposed solution on graphics processing unit can achieve high performances with regards to the cost-accuracy ratio.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献