POFCM: A Parallel Fuzzy Clustering Algorithm for Large Datasets

Author:

Pérez-Ortega Joaquín1ORCID,Rey-Figueroa César David1,Roblero-Aguilar Sandra Silvia12ORCID,Almanza-Ortega Nelva Nely2,Zavala-Díaz Crispín3,García-Paredes Salomón4ORCID,Landero-Nájera Vanesa5

Affiliation:

1. Tecnológico Nacional de México/CENIDET, Cuernavaca 62490, Mexico

2. Tecnológico Nacional de México/IT de Tlalnepantla, Tlalnepantla de Baz 54070, Mexico

3. Faculty of Accounting, Administration and Informatic, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico

4. Tecnológico Nacional de México/IT de Tlalpan, Tlalpan 14500, Mexico

5. Computer Systems, Universidad Politécnica de Apodaca, Apodaca 66600, Mexico

Abstract

Clustering algorithms have proven to be a useful tool to extract knowledge and support decision making by processing large volumes of data. Hard and fuzzy clustering algorithms have been used successfully to identify patterns and trends in many areas, such as finance, healthcare, and marketing. However, these algorithms significantly increase their solution time as the size of the datasets to be solved increase, making their use unfeasible. In this sense, the parallel processing of algorithms has proven to be an efficient alternative to reduce their solution time. It has been established that the parallel implementation of algorithms requires its redesign to optimise the hardware resources of the platform that will be used. In this article, we propose a new parallel implementation of the Hybrid OK-Means Fuzzy C-Means (HOFCM) algorithm, which is an efficient variant of Fuzzy C-Means, in OpenMP. An advantage of using OpenMP is its scalability. The efficiency of the implementation is compared against the HOFCM algorithm. The experimental results of processing large real and synthetic datasets show that our implementation tends to more efficiently solve instances with a large number of clusters and dimensions. Additionally, the implementation shows excellent results concerning speedup and parallel efficiency metrics. Our main contribution is a Fuzzy clustering algorithm for large datasets that is scalable and not limited to a specific domain.

Funder

Tecnológico Nacional de México

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3