Influence of Super Absorbent Polymer on Root Characteristics and Anchorage of Amorpha fruticosa on Rocky Slope

Author:

Hou Shujun,Sun Hailong,Zhou Yinghua

Abstract

Super absorbent polymer (SAP), known as a water retention agent, has a high capacity for water absorption, which can help enhance the soil structure. This paper studied the effects of SAP dosages on the root characteristics and anchorage of Amorpha fruticosa on rock slopes. The internal relationship between root growth effect and soil was discussed, and a specific reference was provided for the rational application of SAP on slopes. Using the pull-out and tensile resistance tests, we systematically studied the changes of soil properties, root distribution, root tensile strength, and root anchorage under six different SAP dosages. The results indicated that: (1) With the increase in SAP dosage, the natural soil water content and water content after 24 h of watering increased significantly, whereas the contents of TN, TP, and TK decreased dramatically. (2) With the increase in SAP dosage, the amount and length of first-order and secondary lateral roots decreased significantly, and there was no significant difference in diameter. The amount of downslope first-order and unembedded secondary lateral roots is greater than upslope. The amount of upslope embedded secondary lateral roots is greater than in downslope. (3) Tensile strength: embedded secondary root > non-embedded secondary root > first-order lateral root; upslope root > downslope root. (4) With the increase in SAP dosage, the plant anchorage drops noticeably. This study concluded that the significant addition of SAP could enhance the tensile strength of upslope embedded secondary lateral roots but would adversely affect soil nutrients, root distribution, and root anchorage. The addition of SAP in this test had no significant effect on improving slope stability. From the perspective of reinforcement capacity, we cannot blindly pursue the survival rate and other high dosage use of water retention agents to increase the risk of slope destabilization.

Funder

Sichuan Youth Science and Technology Innovation Research Team Special Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3