Preparation and Properties of Attapulgite-Hydroxyethyl Cellulose Composite Poly (Acrylic Acid-co-2-acrylamide-2-methylpropanesulfonic Acid) Concrete Internal Curing Material

Author:

Zhao Younan1,Wang Laifa2,Li Yongqing2,Xiong Rui3,Lu Fuyang3

Affiliation:

1. Qinghai Guoluo Highway Engineering Construction Co., Ltd., Xining 810008, China

2. Qinghai Traffic Control Construction Engineering Group Co., Ltd., Xining 810003, China

3. School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China

Abstract

Attapulgite-hydroxyethyl cellulose-poly (acrylic acid-co-2-acrylamide-2-methylpropanesulfonic acid) (ATP-HEC-P(AA-co-AMPS)) in-concrete curing material was synthesized by aqueous solution polymerization using attapulgite (ATP) as an inorganic filler and hydroxyethyl cellulose (HEC) as a backbone. The effects of relevant factors such as ATP dosage, HEC dosage, degree of neutralization, initiator quality, and cross-linking agent quality on the water absorption characteristics of ATP-HEC-P (AA-co-AMPS) were investigated through expansion tests. The micro-morphology of ATP-HEC-P (AA-co-AMPS) was also comprehensively characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, a thermal analysis, and other applicable means. The results showed that the prepared ATP-HEC-P (AA-co-AMPS) had a strong water absorption and water retention capacity, with a water absorption multiplicity of 382 g/g in deionized water and 21.55% water retention capacity after being placed at room temperature for 7 d in a bare environment. Additionally, ATP-HEC-P (AA-co-AMPS) showed good performance for absorbing liquids within the pH range of 7–12. The material’s thermal stability and mechanical properties were also significantly improved after the addition of ATP. The preparation cost is low, the process is simple, and the material meets the requirements for concrete curing materials.

Funder

Science and Technology Department Project of Qinghai Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3