Cardiac Magnetic Resonance Left Ventricle Segmentation and Function Evaluation Using a Trained Deep-Learning Model

Author:

Guo Fumin,Ng Matthew,Roifman IdanORCID,Wright Graham

Abstract

Cardiac MRI is the gold standard for evaluating left ventricular myocardial mass (LVMM), end-systolic volume (LVESV), end-diastolic volume (LVEDV), stroke volume (LVSV), and ejection fraction (LVEF). Deep convolutional neural networks (CNNs) can provide automatic segmentation of LV myocardium (LVF) and blood cavity (LVC) and quantification of LV function; however, the performance is typically degraded when applied to new datasets. A 2D U-net with Monte-Carlo dropout was trained on 45 cine MR images and the model was used to segment 10 subjects from the ACDC dataset. The initial segmentations were post-processed using a continuous kernel-cut method. The refined segmentations were employed to update the trained model. This procedure was iterated several times and the final updated U-net model was used to segment the remaining 90 ACDC subjects. Algorithm and manual segmentations were compared using Dice coefficient (DSC) and average surface distance in a symmetric manner (ASSD). The relationships between algorithm and manual LV indices were evaluated using Pearson correlation coefficient (r), Bland-Altman analyses, and paired t-tests. Direct application of the pre-trained model yielded DSC of 0.74 ± 0.12 for LVM and 0.87 ± 0.12 for LVC. After fine-tuning, DSC was 0.81 ± 0.09 for LVM and 0.90 ± 0.09 for LVC. Algorithm LV function measurements were strongly correlated with manual analyses (r = 0.86–0.99, p < 0.0001) with minimal biases of −8.8 g for LVMM, −0.9 mL for LVEDV, −0.2 mL for LVESV, −0.7 mL for LVSV, and −0.6% for LVEF. The procedure required ∼12 min for fine-tuning and approximately 1 s to contour a new image on a Linux (Ubuntu 14.02) desktop (Inter(R) CPU i7-7770, 4.2 GHz, 16 GB RAM) with a GPU (GeForce, GTX TITAN X, 12 GB Memory). This approach provides a way to incorporate a trained CNN to segment and quantify previously unseen cardiac MR datasets without needing manual annotation of the unseen datasets.

Funder

Canadian Institutes of Health Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3