Improving a Deep Learning Model to Accurately Diagnose LVNC

Author:

Barón Jaime Rafael1,Bernabé Gregorio1ORCID,González-Férez Pilar1ORCID,García José Manuel1ORCID,Casas Guillem2ORCID,González-Carrillo Josefa3

Affiliation:

1. Computer Engineering Department, University of Murcia, 30100 Murcia, Spain

2. Hospital Universitari Vall d’Hbron, 08035 Barcelona, Spain

3. Hospital Virgen de la Arrixaca, 30120 Murcia, Spain

Abstract

Accurate diagnosis of Left Ventricular Noncompaction Cardiomyopathy (LVNC) is critical for proper patient treatment but remains challenging. This work improves LVNC detection by improving left ventricle segmentation in cardiac MR images. Trabeculated left ventricle indicates LVNC, but automatic segmentation is difficult. We present techniques to improve segmentation and evaluate their impact on LVNC diagnosis. Three main methods are introduced: (1) using full 800 × 800 MR images rather than 512 × 512; (2) a clustering algorithm to eliminate neural network hallucinations; (3) advanced network architectures including Attention U-Net, MSA-UNet, and U-Net++.Experiments utilize cardiac MR datasets from three different hospitals. U-Net++ achieves the best segmentation performance using 800 × 800 images, and it improves the mean segmentation Dice score by 0.02 over the baseline U-Net, the clustering algorithm improves the mean Dice score by 0.06 on the images it affected, and the U-Net++ provides an additional 0.02 mean Dice score over the baseline U-Net. For LVNC diagnosis, U-Net++ achieves 0.896 accuracy, 0.907 precision, and 0.912 F1-score outperforming the baseline U-Net. Proposed techniques enhance LVNC detection, but differences between hospitals reveal problems in improving generalization. This work provides validated methods for precise LVNC diagnosis.

Publisher

MDPI AG

Subject

General Medicine

Reference31 articles.

1. World Health Organization (2023, December 05). Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1.

2. Cardiovascular disease as a leading cause of death: How are pharmacists getting involved?;Alzubaidi;Integr. Pharm. Res. Pract.,2019

3. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction;Jacquier;Eur. Heart J.,2010

4. Quantification of left ventricular trabeculae using fractal analysis;Captur;J. Cardiovasc. Magn. Reson.,2013

5. Abnormal Cardiac Formation in Hypertrophic Cardiomyopathy;Captur;Circ. Cardiovasc. Genet.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3