Studies to Overcome Brain–Computer Interface Challenges

Author:

Choi Woo-Sung,Yeom Hong-GiORCID

Abstract

A brain–computer interface (BCI) is a promising technology that can analyze brain signals and control a robot or computer according to a user’s intention. This paper introduces our studies to overcome the challenges of using BCIs in daily life. There are several methods to implement BCIs, such as sensorimotor rhythms (SMR), P300, and steady-state visually evoked potential (SSVEP). These methods have different pros and cons according to the BCI type. However, all these methods are limited in choice. Controlling the robot arm according to the intention enables BCI users can do various things. We introduced the study predicting three-dimensional arm movement using a non-invasive method. Moreover, the study was described compensating the prediction using an external camera for high accuracy. For daily use, BCI users should be able to turn on or off the BCI system because of the prediction error. The users should also be able to change the BCI mode to the efficient BCI type. The BCI mode can be transformed based on the user state. Our study was explained estimating a user state based on a brain’s functional connectivity and a convolutional neural network (CNN). Additionally, BCI users should be able to do various tasks, such as carrying an object, walking, or talking simultaneously. A multi-function BCI study was described to predict multiple intentions simultaneously through a single classification model. Finally, we suggest our view for the future direction of BCI study. Although there are still many limitations when using BCI in daily life, we hope that our studies will be a foundation for developing a practical BCI system.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Signal Generation, Acquisition, and Processing in Brain Machine Interfaces: A Unified Review;Front. Neurosci.,2021

2. Dornhege, G. (2007). Toward Brain-Computer Interfacing, MIT Press.

3. Kandel, E.R., Koester, J., Mack, S., and Siegelbaum, S. (2021). Principles of Neural Science, McGraw Hill. [6th ed.].

4. Estimation of the velocity and trajectory of three-dimensional reaching movements from non-invasive magnetoencephalography signals;J. Neural Eng.,2013

5. Benefits of deep learning classification of continuous noninvasive brain-computer interface control;J. Neural Eng.,2021

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3