Convolutional Neural Network-Based Classification of Steady-State Visually Evoked Potentials with Limited Training Data

Author:

Kołodziej Marcin1ORCID,Majkowski Andrzej1,Rak Remigiusz J.1,Wiszniewski Przemysław1ORCID

Affiliation:

1. Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland

Abstract

One approach employed in brain–computer interfaces (BCIs) involves the use of steady-state visual evoked potentials (SSVEPs). This article examines the capability of artificial intelligence, specifically convolutional neural networks (CNNs), to improve SSVEP detection in BCIs. Implementing CNNs for this task does not require specialized knowledge. The subsequent layers of the CNN extract valuable features and perform classification. Nevertheless, a significant number of training examples are typically required, which can pose challenges in the practical application of BCI. This article examines the possibility of using a CNN in combination with data augmentation to address the issue of a limited training dataset. The data augmentation method that we applied is based on the spectral analysis of the electroencephalographic signals (EEG). Initially, we constructed the spectral representation of the EEG signals. Subsequently, we generated new signals by applying random amplitude and phase variations, along with the addition of noise characterized by specific parameters. The method was tested on a set of real EEG signals containing SSVEPs, which were recorded during stimulation by light-emitting diodes (LEDs) at frequencies of 5, 6, 7, and 8 Hz. We compared the classification accuracy and information transfer rate (ITR) across various machine learning approaches using both real training data and data generated with our augmentation method. Our proposed augmentation method combined with a convolutional neural network achieved a high classification accuracy of 0.72. In contrast, the linear discriminant analysis (LDA) method resulted in an accuracy of 0.59, while the canonical correlation analysis (CCA) method yielded 0.57. Additionally, the proposed approach facilitates the training of CNNs to perform more effectively in the presence of various EEG artifacts.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3